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Explicit stationary solutions to the equations of vorticity conservation on the f - and
β-planes are considered, describing barotropic dipoles (modons) with elliptical
frontiers. The far field – outside the elliptical separatrix demarcating the regions
of closed and open streamlines – is given analytically, whereas the interior is solved
numerically using a successive linearization algorithm. Both ellipses extended along
the translation axis and those extended in the transverse direction are considered.
In the latter case, it is shown that, among the possible solutions, there exist the
so-called supersmooth modons marked by continuity of the vorticity derivatives at
the separatrix. On the β-plane, the separatrix aspect ratio that allows a supersmooth
solution varies depending on the modon translation speed and size, while on the
f -plane, there is only one such separatrix aspect ratio. In this context, the limiting
transition from the β-plane to the f -plane is discussed. The dependence between
the absolute (or relative) vorticity q and the ‘co-moving’ streamfunction Ψ , which is
nonlinear in the interior of non-circular modons, is analysed in detail for both β- and
f -planes, the main concern being the relation between the separatrix form, on the
one hand, and the shape of the q against Ψ scattergraph on the other. The stability
of elliptical dipoles versus the separatrix aspect ratio is examined based on numerical
simulations of the temporal evolution of the modons found. The supersmooth modons
appear to be the most stable among all the elliptical dipoles.

1. Introduction
The first dipole vortex solution was suggested independently by Lamb (1895, 1906)

and Chaplygin (1903) (see the historical essay of Meleshko & van Heijst 1994). This
is the well-known translating circular dipole solution to the Euler equations in two
dimensions (valid on the f -plane). On the β-plane, an analogous circular translating
dipole solution was constructed by Larichev & Reznik (1976), whereas a standing
circular β-plane dipole was found by Stern (1975), who suggested the term ‘modon’
to designate such vortices. Since that time, this term has been loosely used when
speaking of stationary barotropic and baroclinic vortex pairs or similar configurations.
A characteristic property of the translating barotropic dipoles (whether on the f -
or β-plane) is the continuity of their vorticity fields. In contrast, the vorticity field
of the standing Stern modon is discontinuous. Recent investigations suggest that the
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continuity of vorticity is vital for the stability of vortices (Paldor 1999; Kizner &
Berson 2000; Kizner, Berson & Khvoles 2003).

In steadily translating localized β-plane dipoles, when considered in a co-moving
coordinate frame, a closed contour (separatrix) Γ exists which demarcates the interior
(or core) region, where the streamlines are closed, from the exterior (or far-field)
region, where the streamlines are open. The term ‘localized’ is used to distinguish
the solutions possessing finite kinetic momentum, energy etc. and thus characterized
by sufficiently fast decrease of the flow at infinity, i.e. when the distance from the
vortex core increases. Clearly, owing to the stationarity, the contours of constant
absolute vorticity q coincide with the streamlines – the contours of constant ‘co-
moving streamfunction’ Ψ , meaning that there is a functional dependence between q

and Ψ . This dependence is linear in the far-field of a β-plane modon; in its f -plane
counterpart, the exterior vorticity is zero (note that on the f -plane, q signifies just the
relative vorticity since here β = 0), whereas in a standing β-plane vortex the exterior
streamfunction is zero. Regarding the q vs. Ψ relation in the interior domain, although
it is linear in the classical modons of Lamb, Stern and Larichev & Reznik (1983),
generally, it can be nonlinear (see the references below).

In this paper we focus on the barotropic ‘nonlinear’ modons – those whose q vs. Ψ

dependences in the interior domain are nonlinear – accepting the broad interpretation
of the term ‘modon’, but restricting it to form-preserving steadily translating or
standing vortex pairs that possess a separatix. In this sense, e.g. the Lamb, Stern
and Larichev–Reznik dipoles are modons, whereas the shielded nonlinear standing
f -plane dipole solution suggested by Hesthaven et al. (1995) is not.

Although, Hesthaven et al. (1995) showed numerically the essential instability of
their standing dipole, they observed that such a vortex transforms into a stable quasi-
stationary translating modon. The separatrix of the emerged translating modon had
a quasi-elliptical shape extended in the direction perpendicular to the translation
axis, and the q vs. Ψ scattergraph in the interior had a clearly nonlinear shape. The
standing modon of Stern was also found to be unstable (Kizner & Berson 2000)
since small perturbations with westward net impulse led to a fast disintegration of
the vortex pair, whereas those with eastward net impulse resulted in the modon’s
mild transitions to slowly translating dipoles of the Larichev–Reznik type. It is not
inconceivable that instability is a common property of all standing dipoles, because to
balance the self-propulsion natural in vortex pairs, such a dipole must possess some
peculiar qualities. These are, e.g., the unlimited (on the right-hand and left-hand sides
of the translation axis) areas of oppositely signed vorticity enclosing the dipole proper
to the solution of Hesthaven et al. and the vorticity jump across the separatrix in the
Stern modon. Thus, it comes as no surprise that the emergence of standing dipoles
was never observed in numerical or laboratory experiments.

In contrast, the emergence of nonlinear translating modons was reported in a
number of publications devoted to numerical simulations of the temporal evolution
and interaction of vortices, and in most of them the nonlinearity of the q vs. Ψ

relation in the interior was evidenced. For example, in an experiment conducted by
McWilliams & Zabusky (1982), two merging Larichev–Reznik dipoles created a quasi-
stationary vortex with a nonlinear interior dependence of q upon Ψ clearly visible in
the q vs. Ψ scattergraph; a similar result was obtained by McWilliams (1983) who
studied the modon generation by monopole collision (inviscid model) and by Nielsen
& Juul Rasmussen (1997) who followed the viscid evolution of a Lamb modon.
With these studies ranks that of Hesthaven et al. cited above. The emergence of
steadily translating nonlinear modon-like structures was observed also in baroclinic
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models on the β-plane – first by Morrel & McWilliams (1997) in their numerical
experiments with high vertical resolution and later in our two-layer experiments with
exact baroclinic modon solutions (Kizner, Berson & Khvoles 2002). All these results
point to the importance of the search for explicit nonlinear modon solutions.

Weakly nonlinear dipolar structures studied by Nycander (1988) with the use of
asymptotic methods displayed slight quasi-elliptical extension of the vortex separatrix.
Strongly elliptical translating modons were considered by Boyd & Ma (1990) who
suggested a numerical method for the construction of such f -plane vortices. They,
however, considered only the dipoles extended in the direction of the modon
translation (that were never observed in numerical or in laboratory experiments)
and revealed the specific nonlinear internal q vs. Ψ dependence characteristic of such
ellipses.

To the best of our knowledge, Nycander and Boyd & Ma were the first to indicate
the existence of dependence between the separatrix shape, on the one hand, and the
interior q vs. Ψ relation, on the other. Prescribing the modon shape (eccentricity),
Boyd & Ma analysed the resulting q vs. Ψ scattergraphs. Approaches conceptually
opposite to that of Boyd & Ma were employed by Nycander (1988) in his work
devoted to β-plane vortices and by Verkley (1993), who constructed weakly nonlinear
barotropic form-preserving solutions on a sphere.

In our recent study (Kizner et al. 2003), a method for the construction of stationary
non-circular (and hence, nonlinear) two-layer β-plane modon solutions was suggested
and applied, numerous baroclinic elliptical modons being studied. The circularity
and linearity were shown to be equivalent characteristics of the modon. Clearly, this
conclusion is valid for both baroclinic and barotropic modons.

Methodologically, the search for nonlinear modons is facilitated by the existence
of a separatrix, which allows a separate (in some sense) construction of the interior
and exterior solutions with their matching. The far field is determined analytically,
while the interior is solved numerically with the use of a Newton–Kantorovich
algorithm and a collocation method combined with polynomial approximation of the
solution sought. In this paper, we use a particular case of this approach to construct
barotropic nonlinear modon solutions on the f - and β-planes. The main objective
of this paper is the exploration of the properties of elliptical barotropic modons on
the f -plane (translating modons only) and on the β-plane (translating and standing
modons). We consider only dipolar modons based on the fact that conventional
multipolar translating and standing modons (i.e. those corresponding to the second,
third, etc. branches of the dispersion relations of the Lamb, Stern and Larichev–
Reznik solutions) are strongly unstable (Orlandi, Verzicco & van Heijst 1994; Kizner
& Berson 2000).

In § 2, the mathematical set-up of the problem is given and the numerical method
used is described. The elliptical modon solutions found are presented and classified
in § 3; here, the dependence between the internal q vs. Ψ relations and the modon
parameters is established, and the existence of supersmooth modons is shown (§ § 3.1.2
and 3.2). In § 4, the stability of elliptical modons is examined in a series of numerical
experiments, and remarkable persistence of the supersmooth modons is shown.

2. Problem and method
2.1. Formulation

Consider a stationary solution that describes a non-divergent barotropic dipole vortex
translating with a constant speed U in a fluid layer of constant thickness. For such
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solutions, the vorticity conservation in the co-moving frame of coordinates is given
by the equation

J (Ψ, q) = 0. (1)

Here, Ψ = ψ +Uy is the ‘co-moving streamfunction’, ψ is the streamfunction defined
via the relationships u = −∂ψ/∂y, v = ∂ψ/∂x (where u and v are the velocity
components in the non-moving frame); q is the conserved vorticity: q = �ψ + βy

in the β-plane case (absolute vorticity) and q =�ψ in the f -plane case; J ( , ) and
� are the Jacobian and Laplacian operators, respectively; x and y are Cartesian
coordinates in the frame attached to the dipole, the vortex is assumed to translate
in the x-direction. On the f -plane, a localized non-divergent steady-state dipole
can move in any direction, while on the β-plane only the eastward translation is
permitted (Larichev & Reznik 1976). Thus, for the β-plane, we choose x to be
eastward, y northward and U � 0. The solution sought is assumed antisymmetrical
about the x-axis and symmetrical about the y-axis (in the co-moving coordinate
system).

Because of the above symmetry/antisymmetry restriction, the modon separatrix Γ

(see § 1) is symmetrical about both axes, and Ψ and q assume zero values at Γ . We
will confine ourselves to elliptical separatrices only.

In f -plane modons, the streamfunction of the exterior flow, ψ (Ex), is taken as a
harmonic function, i.e.

�ψ (Ex) = 0, (2)

while in translating β-plane modons, it satisfies the Helmholtz equation

�ψ (Ex) = l2ψ (Ex), l2 = β/U, (3)

where U > 0; in a standing β-plane modon ψ (Ex) = 0 (Stern 1975). It is seen that in
all these cases, ψ (Ex) satisfies (1). In the general case of a non-circular modon, the
streamfunction of the interior flow, ψ (In), satisfies the nonlinear equation

J
(
Ψ (In), q (In)

)
= 0. (4)

In addition, we require continuity of the streamfunction and velocity fields at the
separatrix Γ , so that the boundary conditions at Γ are

Ψ (In)
∣∣
Γ

= Ψ (Ex)
∣∣
Γ

= 0,
∂

∂n
Ψ (In)

∣∣∣∣
Γ

=
∂

∂n
Ψ (Ex)

∣∣∣∣
Γ

, (5)

where n is the (external) normal to the contour Γ . Note that, in translating modons,
fulfilling (4) and (5) guarantees that q (In)|Γ = q (Ex)|Γ = 0 (Kizner et al. 2003).

2.2. Exterior flow

On the f -plane, the exterior flow in a co-moving frame of reference can be thought of
as uniform at infinity (x → ± ∞) potential flow rounding an elliptical obstacle (see (2)).
The corresponding solution is unique; it is described by Lamb (1932), for example.
In the Cartesian coordinates x and y, this solution is given by the formulae

ψ (Ex) = −Uy
ry

ry − rx

(
1−

√
x2 + y2 − c2 +

√
(x2 + y2 + c2)2 − 4y2c2

x2 + y2 + c2 +
√

(x2 + y2 + c2)2 − 4y2c2

)
, ε � 1, (6a)

ψ (Ex) = Uy
ry

rx − ry

(
1−

√
x2 + y2 + c2 +

√
(x2 + y2 + c2)2 − 4x2c2

x2 + y2 − c2 +
√

(x2 + y2 + c2)2 − 4x2c2

)
, ε < 1. (6b)
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where c =
√

|r2
x − r2

y |; rx and ry are the ellipse radii in the x- and y-directions,

respectively; and ε = ry/rx is the ellipse aspect ratio.
On the β-plane, the exterior streamfunction field – a solution to (3) – dies out ex-

ponentially at infinity and, at the separatrix Γ , obeys the condition

ψ (Ex)
∣∣
Γ

= −Ursinθ |Γ , (7)

where r and θ are polar coordinates (x = rcosθ, y = rsinθ). We seek it as a Fourier–
Bessel series:

ψ (Ex) = ψ (Ex)(r, θ) =

∞∑
n=0

A2n+1K2n+1(lr)sin(2n + 1)θ, (8)

where Kν is the ν-order modified Bessel function. When Γ is a circle of radius a, (7)
and (8) provide the familiar Larichev–Reznik solution to the exterior problem:

ψ (Ex) = − Ua

K1(la)
K1(lr)sinθ.

For non-circular separatrices, the convergence is guaranteed outside the minimal circle
enclosing Γ , but whether or not the series (8) converges in between this circle and
the separatrix depends on the form of the latter. In the case of elliptical separatrices,
some insight into the problem of convergence gives an inspection of the f -plane
solution (6).

Consider an exterior f -plane solution given by (6a) or (6b) and extend it to the
whole (x, y)-plane. Further, take its formal harmonic series

ψ (Ex) =

∞∑
n=0

A2n+1

1

r2n+1
sin(2n + 1)θ. (9)

Equations (6) are singular along the intervals connecting the foci of the corres-
ponding ellipses. Therefore, series (9) converges only outside the circle passing through
the ellipse foci (cf. Brazier-Smith 1984), and the necessary and sufficient condition for
the convergence of series (9) everywhere outside Γ is that this circle is enclosed in
Γ . In terms of the separatrix aspect ratio, this condition is: 1/

√
2 <ε <

√
2. Clearly,

some limitation of this kind must exist for the β-plane elliptical modons as well,
guaranteeing the convergence of series (8) for mildly extended ellipses.

In practical computations on the β-plane, we truncate series (8), replacing the infinite
sum with a sum from n= 0 to N , and find the N +1 unknown coefficients A1 to A2n + 1

by satisfying the boundary condition (7) in a fixed finite set of boundary points and
solving the corresponding linear system of equations in the least-squares (LSQ) sense
(for details see Kizner et al. 2003). To estimate the range of aspect ratios safe in the
sense of convergence of series (8), we ran high-precision (31 decimal places) tests with
N varying from 7 to 19 at βrxry/U � 1 (independent non-dimensional parameters
governing the elliptical modon solutions are discussed in § 2.4). Our tests showed
that, at least within the interval 0.75 � ε � 1.25, the computed maximum absolute
value of Ψ (Ex)|Γ over 0 � θ � π/2 is extremely small and decreases with growing N

(table 1); it also decreases with decreasing U and ε approaching 1. These facts evidence
in favour of the convergence of series (8) everywhere at the elliptical separatrix Γ

and outside it for reasonable translation speeds and for ε varying within the interval
0.75 � ε � 1.25. The results presented below correspond to this range of the aspect
ratios.
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N ε = 0.75 ε = 1.25

7 2.390 × 10−4 4.745 × 10−5

9 5.000 × 10−5 6.363 × 10−6

11 1.097 × 10−5 8.946 × 10−7

13 2.489 × 10−6 1.301 × 10−7

15 5.791 × 10−7 1.941 × 10−8

17 1.376 × 10−7 2.954 × 10−9

19 3.315 × 10−8 4.569 × 10−10

Table 1. Maximal values of |Ψ | at the modon separatrix.

2.3. Interior solution

Once the exterior solution is known, the second of the boundary conditions (5)
becomes definite, and the problem (4), (5) is fully set. Based on the analogy with
the circular modons, we can expect that conditions (5) determine a countable set of
solutions to (4) in the domain bounded by Γ . Indeed, it is common knowledge that
(4) implies a functional dependence between q (In) and Ψ (In). In circular modons, only
linear relations q (In) = −k2Ψ (In) can hold (Kizner et al. 2003). In this case, there is a
countable spectrum of values ka allowing the required matching of the interior and
exterior solutions at the circular separatrix r = a (Lamb 1932; Larichev & Reznik
1976). More specifically, on the f -plane, the allowed values of ka are roots of the first-
order Bessel function J1. On the β-plane, any fixed value of la determines a countable
number of ka values. The latter means that the modon size a and its translation
speed U are interrelated in circular β-plane modons. For this reason, the equations
determining the parameter k in circular modons (both on the β- and f -plane) are
conventionally referred to as dispersion relations. When the lowest branch of the
dispersion relation is considered, i.e. when the smallest value of ka is taken, the
corresponding circular modon is a pure dipole. Otherwise, the solution constructed
on a higher branch of the dispersion relation, represents a dipole encircled in one or
more circular rings of alternating vorticity; each ring is antisymmetric about the x-axis,
i.e. consists of two semi-rings in which the vorticity is opposite in sign. Solutions of
this type are sometimes referred to as ‘shielded’ modons. They, however, should not
be confused with the shielded dipoles that are considered in § 3.1.

A detailed description of the general method for constructing baroclinic nonlinear
interior solutions (including thorough accuracy estimates) appears in Kizner et al.
(2003). Here, a brief overview of the method is given with special reference to
barotropic elliptical modons.

We search for the interior solution using a version of the successive linearization
(Newton–Kantorovich) iterative procedure and a collocation method with a poly-
nomial approximation of the ‘co-moving streamfunction’. Let i be the iteration index
(i = 0, 1, . . .). Once the ith approximation, Ψ

(In)
i , is known, approximation i +1 is

computed as Ψ
(In)
i+1 = Ψ

(In)
i + δ, where the correction δ satisfies the third-order linear

differential equation

J
(
δ, q

(In)
i

)
+ J

(
Ψ

(In)
i , �δ

)
= −J

(
Ψ

(In)
i , q

(In)
i

)
(10)

and the boundary conditions

δ|Γ = −Ψ
(In)
i

∣∣
Γ
,

∂

∂n
δ

∣∣∣∣
Γ

=
∂

∂n
Ψ (Ex)

∣∣∣∣
Γ

− ∂

∂n
Ψ

(In)
i

∣∣∣∣
Γ

. (11)
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N Mean res, eq. (10) Mean ΨΓ Mean

[
∂Ψ

∂n

]
Γ

Mean qΓ

7 0.037874 0.138762 0.037882 4.443335
9 0.026870 0.053644 0.034347 0.412563

11 0.009145 0.008515 0.003870 0.022257
13 0.001272 0.004962 0.001056 0.011988
15 0.000755 0.004373 0.000940 0.010306

Table 2. Root-mean-square errors in an ordinary β-plane modon solution (ε = 1.15).

Formally, starting from the second iteration, the right-hand parts in these conditions
should be zero; however, because the linear problem is solved numerically, we use
the above form at every iteration just to raise the accuracy. The above iterative
procedure converges to a true solution of the problem (4), (5) if the initial guess Ψ

(In)
0

is chosen sufficiently close to this solution (Kantorovich 1948). While searching for a
weakly elliptical dipole, we use as an initial guess the analytical Lamb–Chaplygin or
Larichev–Reznik dipole solution with a circular separatrix of a radius r̄ =

√
ryrx and

translation speed U . In a similar manner, weakly elliptical solutions already found
are used as initial guesses for computing dipolar modons with stronger elliptisities.

To facilitate the subsequent computations, we approximate the field Ψ
(In)
0 by a

(2N + 1)-degree polynomial in x, y, which is even in x and odd in y. The correction
δ is represented in the same form:

δBT =
∑

0�p+s�N

αp,sx
2py2s+1. (12)

Now that the functions Ψ
(In)
0 and δ are given in polynomials, all differential operators

appearing in (10) and (11) can be expressed explicitly. We require (10) and boundary
conditions (11) to be satisfied in a chosen set of internal and boundary points, the
number of points exceeding considerably the number of polynomial coefficients in
(12). In this way, (11) and (12) are reduced to an over-determined system of linear
equations in αp,s , which is solved in the LSQ sense. The LSQ approach assures that
the linear system is well-determined; it provides a good approximation to the true
exact solution everywhere within Γ by damping down the possible ‘high-frequency’
oscillations of the polynomials.

Because, in the barotropic case, fewer conditions (as compared to the baroclinic
model) must be fulfilled, we were able to compute and study a sufficiently wide family
of solutions. In most of these computations we used N =11, approximately 700
internal points (i.e. a 30 × 30 mesh) and 300 boundary points; as seen from tables 1
and 2, this choice provides a sufficient accuracy. For checking the accuracy at which (4)
was satisfied, a fine 200 × 200 mesh coating the first quadrant (0 � x � rx, 0 � y � ry)
was used, while the fulfilment of boundary conditions along the first quarter of
the separatrix was checked in 1000 points. In table 2, results of such a check are
presented, the modon parameters being ε = 1.15, r̄ = 1, U = 1. In the headings of
table 2, the following notations are used: ‘Mean res, eq. (10)’ is the root-mean-
square residual, i.e. the mean (over about 31 400 fine-mesh points) of the right-
hand part of (10) at the output of the iterative procedure; ‘Mean ΨΓ ’ – the root-
mean-square (over 1000 boundary points) of Ψ at the separatrix; ‘Mean qΓ ’ –
the same for q; ‘Mean [∂Ψ/∂n]Γ ’ – the same for the jump of the normal to Γ
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derivative of Ψ . In the special case of high translation speeds, computations were run
with N = 13 (see § 3.1.1). We note that, the closer ε is to 1, the higher is the accuracy
at which the interior solution is computed: for a circular modon, the errors are of the
order of 10−10 at N = 7 and decrease with increasing N .

2.4. Independent non-dimensional parameters

As mentioned in § 1, only dipolar modons are considered in this paper. To understand
how many free parameters define a translating elliptical modon (or, more generally,
a modon with a convex symmetrical separatrix), it is convenient to rewrite the
equation of vorticity conservation in a non-dimensional form using, for example, the
geometrical mean radius of the vortex, r̄ =

√
ryrx , as a scale for x, y, r , and r̄U for ψ .

In this case, on the β-plane, we have

J (ψ + y, �ψ + λ2y) = 0, λ2 =
βr̄2

U
. (13)

In non-dimensional variables, for the exterior domain we have: q (Ex) = λ2Ψ (Ex) and
�ψ (Ex) = λ2ψ (Ex), where λ= lr̄; this form of the q (Ex) vs. Ψ (Ex) relation is independent
of the separatrix shape. In the interior, the functional relation FΓ between q (In) and
Ψ (In), i.e. �ψ (In) + λ2y = FΓ (ψ (In) + y), does depend on Γ (for example, for a circular
modon, the function FΓ is linear, and otherwise is nonlinear); here and below, the
subscript Γ indicates the ‘parametric’ dependence of this relation on the separatrix
form.

For translating modons on the f -plane, (1) in the non-dimensional variables
becomes: J (ψ + y, �ψ) = 0, yielding (2) outside the vortex frontier and a nonlinear
dependence �ψ (In) = FΓ (ψ (In) + y) in its interior.

In the case of a standing modon on the β-plane, the scale r̄U for ψ introduced
above is invalid since U = 0. Instead, this time ψ should be scaled via βr̄3. The
resulting non-dimensional form of (1) is J (ψ, �ψ + y) = 0, so that ψ (Ex) = �ψ (Ex) = 0
in the exterior and �ψ (In) + y = FΓ (ψ (In)) in the interior. Clearly, these scales are
also appropriate for translating modons on the β-plane. If they are assumed, the
non-dimensional version of (1) is

J

(
ψ +

1

λ2
y, �ψ + y

)
= 0, (14)

which is equivalent to (13).
The above scaling indicates that, on the β-plane, two independent factors determine

a translating modon solution, namely, λ2 (incorporating the modon size and speed)
and the vortex frontier shape (not size), whereas for standing modons on the β-plane
and for translating modons on the f -plane, the separatrix shape is the only governing
factor. In elliptical vortices, the aspect ratio ε can be chosen as the parameter deter-
mining the frontier shape.

All the results presented below are given in non-dimensional variables.

3. Stationary modon solutions
3.1. β-plane elliptical modons

3.1.1. Classification of translating modons

On the β-plane, the family of translating elliptical modons is two-parameter, the
parameters being ε and λ2. We constructed stationary modon solutions for 0< λ2 � 5
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Figure 1. Classification of elliptical β-plane modons on the parameter plane (λ2, ε): line (i)
demarcates the regions of dented and non-dented solutions; line (ii), intermediate solutions
between shielded and non-shielded modons; line (iii), supersmooth modons; shaded regions,
dented (beneath line (i)) and shielded (above line (ii)) solutions; ε0 ≈ 1.162, aspect ratio of the
f -plane ‘supersmooth’ elliptical solution.

and 0.75 � ε � 1.25, the goals being to classify the possible dipole solutions according
to the peculiarities of their vorticity fields and study the degree of nonlinearity of the
function q (In) = FΓ (ψ (In)) in relation to ε and λ2. The main results of our analysis are
summarized in figure 1, where the classification of modons in the parameter space
(ε, λ2) is shown. A detailed description of the solutions found is given below (see also
figures 2 to 7).

As mentioned above, the circularity of the separatrix (ε = 1) and the linearity of the
function FΓ are equivalent properties of a β-plane modon. Boyd & Ma (1990), who
considered the f -plane case and studied elliptical modons extended in the x-direction,
noticed that the increase of ellipticity results in growing nonlinearity of the internal
q vs. Ψ dependence. We found this to be true also on the β-plane both for ellipses
extended in the x-direction and for those extended in the y-direction. Following
the terminology of Kizner et al. (2003), we refer to the ellipses extended in the
y-direction as ‘ordinary’ since these are the dipoles that usually emerge in laboratory
and numerical experiments (see also § 4); correspondingly, the ellipses extended in the
x-direction are termed ‘extraordinary’ (figure 1).
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Figure 2. Ordinary β-plane elliptical modon (aspect ratio ε = 1.15; mean radius r̄ =1;
translation speed U = 1): (a) absolute vorticity q; (b) cross-section of the q field at x =0;
(c) ‘co-moving streamfunction’ Ψ ; (d) q vs. Ψ scattergraph. Solid iso-contours in (a) and
(c) are given at a 20% interval of the maximum/minimum; dashed contours, 2% of the
maximum/minimum; bold line, zero contour; regions of positive values are shaded. Curved
line in figure (d) corresponds to the interior domain; dashed straight line, exterior domain.

In ordinary elliptical modons, both Ψ (In) and q (In) assume their global maximum
or minimum values at the modon poles (figure 2). Hereinafter the term ‘pole’ is used
to designate the isolated extreme points of the fields Ψ (In) and q (In), i.e. those points
in whose vicinity the iso-contours of Ψ (In) and q (In) are closed; these points should
not be confused with the ellipse foci. In extraordinary modons, from a certain aspect
ratio ε = εD(λ2) < 1 down, the absolute vorticity field is ‘dented’ in the vicinity of the
modon poles (figure 3); in these points q (In) assumes its local extrema, while the global
maximum and minimum of q (In) are assumed at some closed contours encircling the
poles; the Ψ (In) field remains qualitatively similar to that of a conventional circular
modon. In figure 1, the line ε = εD(λ2) separating the regions of dented and non-dented
extraordinary elliptical modons is labelled (i).
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Figure 3. Dented extraordinary β-plane elliptical modon (aspect ratio ε = 0.85; other
parameters and notation as in figure 2).

In ordinary elliptical modons, by increasing ε at fixed λ2, increasingly curved q (In)

vs. Ψ (In) scattergraphs were obtained (figure 4). There is a specific aspect ratio
ε = εSh(λ

2) at which the scattergraph is tangent to the Ψ -axis while at ε > εSh(λ
2)

the scattergraph crosses the Ψ -axes three times, and the modons become ‘shielded’
in terms of q; these ‘shielded’ modons remain two-polar, but each of the absolute
vorticity patches of common sign (those including the poles) is enclosed in a region
where q is oppositely signed (figure 5). We note that the physical and topological
nature of shields in elliptical dipolar modons differs completely from that in the four-
polar shielded circular Larichev–Reznik modons constructed on the second branch
of the dispersion relation (see § 2.3) or in the four-polar elliptical solutions obtained
in the vicinity of such circular modons (similar baroclinic solutions were described in
Kizner et al. 2003). The line demarcating shielded and non-shielded modons on the
(ε, λ2)-plane is labelled (ii) in figure 1.

The functional dependence of q upon Ψ in the interior domain can be approximated
at any accuracy by polynomials. Since FΓ (Ψ (In)) is an odd function, for every
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Figure 4. Scattergraphs (q vs. Ψ ) of the circular and ordinary elliptical β-plane modons
characterized by different aspect ratios (mean radius r̄ = 1, translation speed U = 1): (a)
general view; (b) graphs in the vicinity of the origin; line (i), ε = 1; line (ii), ε = 1.1; line (iii),
ε = 1.175; line (iv), ε = 1.25 (other notation as in figure 2d).
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Figure 5. Shielded modon, q field (β-plane, aspect ratio ε = 1.25, mean radius r̄ =1,
translation speed U = 1; notation as in figure 2a).

solution found we approximated the interior scattergraph by an odd seventh-degree
polynomial,

q = a1Ψ + a3Ψ
3 + a5Ψ

5 + a7Ψ
7, (15)

and examined the dependences of the polynomial coefficients on λ2 and ε. The most
informative are the coefficients a1 and a3. Coefficient a1 represents the slope at which
the graph of the function q = FΓ (Ψ (In)) passes through the origin (figure 4). Regarding
the coefficient a3, computations show that in elliptical modons (when ε �= 1) it differs
from zero and carries the main information on the nonlinearity of the function
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Figure 6. Characteristics of the internal q vs. Ψ scattergraphs of β-plane elliptical modons
as functions of ε and λ2: (a) slope in the origin (coefficient a1 in (15)); bold solid line, a1 = 0;
bold dashed line, a1 = λ2; (b) nonlinearity index (coefficient a3 in (15)).

FΓ (Ψ (In)), this is the reason to hold it as a nonlinearity index. We have restricted
ourselves to the seventh degree in (15) because further increase in the degree did not
affect significantly the coefficients a1 and a3.

As expected, in circular modons, the obtained internal q vs. Ψ scattergraphs are
linear (i.e. a3 = a5 = a7 = 0 at quite a high accuracy). Accordingly, the computed
dependence of a1 on λ2 faithfully reproduces the first branch of the Larichev–Reznik
dispersion relation considered in terms of – (ak)2 and (al)2. The surfaces visualizing
the dependences of a1 and a3 on λ2 and ε are shown in figure 6; they are based on
computations at N = 11. As seen in figure 6(b), the nonlinearity increases with the
deviation of ε from 1 (at fixed λ2) and also with the increasing λ2 (at a fixed ε) when,
say, the translation speed decreases at fixed size and aspect ratio.

In figure 6(a), the bold lines superimposed on the surface a1 = a1(ε, λ
2) represent

the solutions that satisfy the conditions a1 = 0 (solid line) and a1 = λ2 (dashed line).
All the solutions that satisfy the condition a1 = 0 fulfil the relation ε = εSh(λ

2); these
are the solutions that demarcate shielded and non-shielded elliptical modons. The
solutions that fulfil the condition a1 = λ2 constitute the class of so-called supersmooth
elliptical solutions which are examined more closely in § 3.2.

The surfaces a1(ε, λ
2) and a3(ε, λ

2), shown in figure 6, stop at λ2 = 1. This is due to
the growing errors in the numerical procedure at decreasing λ2. The accuracy could,
in principle, be improved by raising N from 11 to 13 and by increasing the number of
internal and boundary points in which the fulfilment of (10) and (11) are demanded.
Because of the large volume of computations, we performed such high-accuracy
calculations only for λ2 < 1 and 1.14 <ε < 1.18 and for λ2 < 1 and 0.94 < ε < 0.96.

This was done in order to resolve the apparent meeting point of the two bold lines
on the surfaces a1(ε, λ

2), and the point, in which line (i) in figure 1 runs into the axis
λ2. We note that, whenever the procedure converges at N =11 and relatively coarse
grid, the solutions obtained practically coincide with those obtained at higher N and
finer grids.

3.1.2. Supersmooth β-plane modons

Consider now the slope at which the graph of the function q (In) = FΓ (Ψ (In)) crosses
the Ψ -axis in the origin. As seen in figures 4(b) and 6(a), this slope is a monotonic
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Figure 7. Supersmooth β-plane elliptical modon (aspect ratio ε = 1.185, mean radius r̄ = 1,
translation speed U = 1): (a) iso-contours of q; (b) q vs. Ψ scattergraph in the vicinity of the
origin (notation as in figure 2a, d).

function of ε; it is negative at ε < εSh(λ
2) and exceeds λ2 when ε is large enough.

Therefore, at any fixed λ2, there exists a unique ordinary elliptical solution, in which
the slope of the internal scattergraph in the origin equals that of the external graph,

dq (In)

dΨ (In)

∣∣∣∣
Ψ (In)=0

=
dq (Ex)

dΨ (Ex)
≡ λ2. (16)

This is the only elliptical modon with continuous normal vorticity derivatives at the
separatrix, because (16) guarantees that

∂

∂n
q (In)

∣∣∣∣
Γ

=
∂

∂n
q (Ex)

∣∣∣∣
Γ

.

We term the solutions with such a degree of smoothness of their vorticity fields
‘supersmooth modons’. Clearly, in supersmooth modons a certain single-valued relation
ε = εSS(λ

2) between the parameters ε and λ2 is fulfilled.
In terms of the coefficient a1, supersmooth solutions satisfy the condition a1 = λ2

(dashed line in figure 6a). The line ε = εSS(λ
2) representing supersmooth modons in

the parameter space is labelled (iii) in figure 1; it is a projection on the plane (λ2, ε)
of the dashed bold line a1 = λ2 shown in figure 6. It lies entirely inside the region
of ‘shielded’ elliptical modons bounded by line (ii) in figure 1. Line (ii), in turn, is
a projection on the (λ2, ε)-plane of the solid bold line a1 = 0 shown in figure 6(a).
The estimated coordinates of the meeting point of lines (ii) and (iii) are λ2 = 0 and
ε ≈ 1.162.

It is worthy of emphasizing again that, as distinct from the f -plane, the exterior
scattergraph of a β-plane modon appears as a positively sloping straight line
passing through the origin. Therefore, for the tangency of the exterior and interior
scattergraphs in the origin, the latter must cross the Ψ -axis more than once. In other
words, a supersmooth β-plane modon is necessarily shielded (figure 7).
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Figure 8. Scattergraphs (q vs. Ψ ) in the interior domains of f-plane modons (mean radius
r̄ = 1, translation speed U = 1): (a) extraordinary modons; (b) ordinary modons, general view;
(c) ordinary modons, graphs in the vicinity of the origin; line (i), ε = 0.75; line (ii), ε = 0.9; line
(iii), ε =1; line (iv), ε =1.1; line (v), ε = ε0 ≈ 1.162; line (vi) ε = 1.25.

3.1.3. Standing β-plane modons

The condition U = 0 implies that, outside the separatrix, the streamfunction is
zero, so the absolute vorticity is represented by the background, planetary vorticity y

only (see § 2.2). On the other hand, owing to the antisymmetry, q (In)|Γ = 0. Therefore,
standing elliptical β-plane modons, just like Stern’s circular standing solution, possess
a vorticity jump across the separatrix Γ . Ordinary and extraordinary standing solu-
tions represent limiting cases of the corresponding translating modons as λ2 → ∞ (see
(14)). We determined them by solving (4) numerically with zero boundary conditions
and Ψ (In) replaced with ψ (In). In our computations, such modons were found only
within the interval 0.85 � ε � 1.15, their internal structures being qualitatively similar
to those of the translating β-plane and f -plane modons at the same aspect ratio.
The increase of the aspect ratio ε up to the maximal allowable value 1.15 did not
lead to the formation of a vorticity shield (in the above-defined sense) around the
poles. We might suppose that ε � 1.15 is simply insufficient for a β-plane modon to
bear a shield. Does this result suggest that standing modons are always non-shielded
(i.e. can only be mildly extended in the y-direction), or should it be interpreted
as a limitation of the numerical procedure applied? To date, this question remains
unanswered (even though the second alternative looks more likely).

3.2. f -plane modons

The elliptical f -plane modon solutions depend on a single free parameter, the aspect
ratio ε. While in the exterior of such a modon q =0, the Ψ and q fields in the interior
do not differ qualitatively from those of a modon on the β-plane. The nonlinearity
of the function FΓ (Ψ (In)) increases with growing deviation of the aspect ratio from 1
(figure 8). This is also seen in figure 9 where the dependences of the coefficients a1

and a3 on ε in (15) for the f -plane elliptical modons are shown. When the aspect
ratio is larger than a certain ε0 > 1, the ordinary modons are shielded, otherwise they
are non-shielded.

From the classification standpoint, the solution at ε = ε0 (figure 9a) fulfils a
twofold role: it both separates the shielded and non-shielded modons and is super-
smooth. Indeed, in this solution (dq (In)/dΨ (In))|

Ψ (In)=0 = 0 and hence (∂/∂n)q (In)|Γ =
(∂/∂n)q (Ex)|Γ = 0. This is distinctive from the β-plane case.
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Figure 9. Characteristics of the internal q vs. Ψ scattergraphs of f-plane elliptical modons as
functions of ε: (a) slope in the origin (coefficient a1 in equation (15)); (b) nonlinearity index
(coefficient a3 in (15)); ε = ε0 ≈ 1.162, aspect ratio of the supersmooth modon.

On the β-plane, the two lines in the parameter space (λ2, ε) symbolizing the
supersmooth solutions and those separating the shielded solutions from non-shielded
tend to meet at a point where λ2 = 0 and ε ≈ 1.162 (figure 1, lines (ii) and (iii)).
Therefore, it comes as no surprise that an independent estimation of the aspect ratio
ε = ε0 separating the shielded and non-shielded modons on the f -plane gives the same
value, ε0 ≈ 1.162: the β-plane supersmooth elliptical solutions and the intermediate
solutions separating the shielded and non-shielded modons go to the above-mentioned
supersmooth f -plane solution as β → 0.

In a similar way, the f -plane solution that separates the dented and non-dented
modons (at ε ≈ 0.951) can be thought of as a limiting case (as β → 0) of the β-plane
modon solutions represented in figure 1 by line (i).

4. Temporal evolution of circular and elliptical modons
4.1. Simulation model

4.1.1. Base version

To clarify the stability properties of the solutions obtained, we conducted a series of
numerical experiments in which temporal evolution of modons was followed, resulting
from different kinds of perturbations (see below). For this purpose we adopted the
code previously used by Kizner & Berson 2000 (see also Kizner et al. 2002, where
a more general, multi-layer version of this model is described in detail). The model
was initialized using the stationary elliptical modon solutions presented above, the
variables being non-dimensional.

Since a β-plane elliptical modon is determined by only two independent parameters
ε and λ2, when dealing with the β-plane, we can use the initial mean radius of the
dipole r̄0 as the scale for the space variables x, y, r , and chose the following scales for
the remaining variables: U ∗ = βr̄2

0 for the velocity, T = r̄0/U ∗ for time; U ∗r̄0 for the
streamfunction and 1/T for the vorticity. Clearly, such a scaling incorporates both
travelling and standing β-plane modons. The non-dimensional β-plane simulation
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model is based on two equations:

∂q

∂t
+ J (ψ, q) = 0 (17)

and

�ψ = q − y, (18)

where t is time and x and y are the space coordinates in an absolute frame of
reference.

Regarding the f -plane, since elliptical dipole modon solutions depend on only one
free parameter ε, we can run experiments with modons having the same initial radius
and the same initial translation speed U . By substituting this fixed initial translation
speed for U ∗ and keeping the definitions of the remaining scales, we arrive at the
same non-dimensional equation (17), whereas (18) is replaced by

�ψ = q. (19)

Equation (17) is integrated in a rectangular box [−X < x < X; −Y < y < Y ] with
periodical conditions at x = ± X, the conditions at y = ± Y being ψ =0; the ‘physical’
x-coordinate is calculated as x + 2Xn, where n is the number of crossings of the right-
hand boundary of the box by the modon centre. In all the experiments X = Y = 5,
the mesh size equals 0.05, the time step τ is controlled by the gradients of ψ and q

and varies within the interval 10−3 to 5 × 10−3. The computations at any time step t

comprise the following elements. First, the streamfunction ψ is determined from the
Poisson equation (18) (β-plane) or (19) (f -plane) supplied with the corresponding
boundary conditions. At this stage, the vorticity q is assumed from the previous time
step t − τ (if t > 0) or from the initial condition (if t = 0), and the problem is solved
using a spectral decomposition in eigenfunctions in the x-direction and marching
in the y-direction. Subsequently, the vorticity is computed from the finite-difference
analogue of (17), where a combination of the direct and Matsuno schemes and
Arakawa approximation for the Jacobian operator are used (Mezinger & Arakawa
1976); this scheme conserves the net energy in the box.

Note that the zero-step streamfunction field computed according to the above-
described algorithm will always differ a little from that of the high-resolution (nearly
exact) stationary modon solution whose vorticity serves as the initial condition. This
is a manifestation of the so-called ‘adjustment error’ – a result of the adjustment
of the ‘exact’ solution to the larger mesh size and finite dimensions of the domain
considered. Accordingly, the aspect ratio, ε, and the distance between the poles, d ,
estimated from Ψ and displayed in the figures as corresponding to t =0 might differ
slightly from their exact values. The translation speed is computed at t = 0, 1, . . .

from the observed displacement of the Ψ maximum. Therefore, the estimated initial
translation speed also differs somewhat from the prescribed value. To distinguish the
modon parameters at t = 0 estimated in this way from the ones prescribed in our
procedure for the construction of stationary modon solutions, we refer to the latter
as ‘nominal’ parameters.

4.1.2. Cutting filter

When weakly non-stationary processes are simulated, i.e. when a modon evolves
slowly in time while translating along the x-axis, the model can be used as it is. The
situation changes noticeably if the modon behaves in an essentially non-stationary
manner. In this case, owing to periodicity in the x-axis, the vortex can be bombarded
by its own vorticity filaments or debris and, on the β-plane, by Rossby waves
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emitted by itself. Clearly, such an evolution may differ significantly from that on
an unbounded (x, y)-plane. To treat this problem, we adopt a version of the so-
called cutting procedure suggested by Hesthaven, Lynov & Nycander (1993), which
is akin to the ‘contour surgery’ (Dritschel 1988) conventionally used in the contour
dynamics to cutoff long and thin vorticity filaments. Within the cutting procedure,
periodically in time, a mask is put on the computed relative vorticity field, �ψ , the
period being equal to 1. The mask blots out the peripheral vorticity by replacing �ψ

with M(r)�ψ , where the function M(r) equals 1 at r � 3 and smoothly decreases in
a Gaussian manner as r > 3 becoming, in effect, zero at r > 4.

The periodical cutting has a different effect on the dynamics of the f -plane and
β-plane modons. In terms of vorticity, non-stationary dynamics are primarily apparent
in the distortion of the q field in the wake of a modon due to filamentation. Thus,
on the f -plane, the exterior flow outside this wake remains irrotational (q = �ψ = 0),
and the mask, while cutting off the train of filaments and debris at r > 4, does not
affect the modon core structure or its translational movement.

On the β-plane, the far-field structure and the translation speed of slowly
(adiabatically) evolving modons are interrelated. Indeed, as seen from (3) and (8),
when r is sufficiently large, a steady-state relative vorticity field is proportional to ψ (Ex)

and hence must decay as an exponent of r
√

β/U (in dimensional variables). Therefore,
when a quasi-steady or weakly non-stationary stage of evolution is modelled, the main
dynamical effect of cutting is a mild reduction of the modon translation speed with
respect to that on an unbounded (x, y)-plane (the ‘hindering effect’ described by
Kizner et al. 2002). At a strongly non-stationary stage, however, the reduction of
translation speed due to the cutting becomes insignificant as compared to the effect
of ‘bombarding’ if the cutting filter were not applied.

We ran a number of experiments, in which the temporal evolution of the elliptical
modons was simulated. Two versions of the model were employed. The version
without the cutting was used when dealing with slowly evolving (non-dented and
non-tilted modons). In this case, we studied the resistance of the modons to small
disturbances induced by the finite size of the basin, periodical conditions at its western
and eastern boundaries, finite-difference approximation and processor rounding off.
The experiments were then re-run with the application of cutting in order to clarify the
effect of modon slowing down on the separatrix form and other modon characteristics.
For vortices exhibiting conspicuous filamentation and Rossby wave radiation (dented
modons on the f - and β-plane and tilted β-plane modons), only the version with the
cutting was applied.

4.2. Evolution of β-plane modons

4.2.1. Slowly evolving modons. Simulations without cutting

Non-dented modons (those with εD(λ2) <ε, see figure 1) being subjected to small
perturbations change quite slowly; the timescale of these changes is much smaller
than the characteristic turnover time. Therefore, it is appropriate to simulate their
evolution without the cutting filter.

According to our computations, mildly extended modons (those with the separatrix
aspect ratio ranging approximately from 0.95 to 1.05) behave qualitatively in the same
manner as does the circular modon. The latter is known for its robustness tested in
several numerical experiments (McWilliams & Flierl 1979; McWilliams et al. 1981;
Makino, Kamimura & Taniuti 1981; Larichev & Reznik 1983; Hesthaven et al. 1995).
However, these experiments, owing to their relatively short duration (tens of time
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Figure 10. Evolution of the circular and ordinary elliptical β-plane modons in projection on
the parameter plane (λ2, ε), simulations without cutting: A, B, C, D, tracks left by evolving
modons with the initial nominal aspect ratios 1, 1.15, 1.2 and 1.25, respectively, and λ2 = 2;
time separation between solid circles is 500. (a) General view; (b) magnified area of elliptical
modons (enclosed in dashed rectangle in (a)); �, initial states; �, states reached by t = 4000.

units), do not allow us to judge whether a circular modon is stable or is it an unstable
slowly evolving coherent vortex structure.

Our experiments lasted for thousands of time units. The results related to the
circular modons can be interpreted as a demonstration of their weakly unstable
behaviour; the modon characteristics changed slowly, but rather monotonically.
This can be seen, for example, in figure 10(a) (line A), where tracks left on the
parameter plane (λ2, ε) by four evolving modons are shown. It is worth noting that,
in the experiments on the f -plane (see § 4.3), the circular Lamb modon also behaves
somewhat unstably: it slows down regardless of whether the cutting is applied or
not. This suggests that the slowing down observed in the translation of the initially
circular β-plane modon with the nominal translation speed U = 0.5 is not just a result
of ‘bombarding’, but is a manifestation of truly unstable processes in its dynamics
that eventually lead to the disintegration of the dipole.

Ordinary elliptical modons whose evolution is shown in figure 10(a) have the same
nominal translation speed U = 0.5 (i.e. λ2 = 2), but different aspect ratios: ε = 1.15,
ε = 1.2 and ε =1.25. They demonstrate a more stable behaviour than the circular
modon (figure 10a). Direct calculations show that, at a fixed translation speed,
vortices with higher aspect ratios possess a larger amount of kinetic energy. However,
this is not the reason for their generally stronger robustness as compared to the
circular modons. Indeed, according to our data, an ordinary elliptical modon with
nominal parameters ε =1.15 and U = 0.35 that has the same integral kinetic energy
(approximately 3.12) as the circular modon with U = 0.5, changes by t = 1000 less
significantly than the circular modon.

A closer inspection of the tracks at a higher resolution (figure 10b) convinces us that
the shielded modon with the initial nominal aspect ratio ε = 1.2 is the most stable
(probably, the only stable) among the four dipoles tested. Throughout the whole
simulation – for 4000 time units – this modon remains the closest (in the metrics
of the (λ2, ε)-plane) to its initial position and to the line ε = εSS(λ

2) representing the
supersmooth ‘exact’ modons, the distances being within the limits of the adjustment
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Figure 11. Evolution of an initially extraordinary dented elliptical β-plane modon (nominal
mean radius r̄ = 1, translation speed U = 1, aspect ratio ε = 0.75): upper panel, q fields
(notations as in figure 2a); lower panel, q vs.Ψ scattergraphs.

error (see § 4.1.1). We interpret this as evidence of the stability of supersmooth modons
and attribute it to the continuity of the vorticity derivatives at the separatrices of
such modons. In this relation, it is worth noting that, in non-supersmooth modons,
the angle between the interior and exterior q vs. Ψ scattergraphs remains non-zero
for thousands of time units.

In all the experiments presented in this subsection, the changes in net enstrophy do
not exceed the limit of 0.5%.

4.2.2. Simulations with cutting. Instability, slow evolution and shield formation

According to our experiments, dented modons (those strongly extended in the
x-direction) are unstable: the stronger the dent (i.e. the stronger the separatrix
extension), the stronger the changes undergone by the dipole. Eventually, vortices
of this kind make transitions to quasi-steady non-dented dipole states, in which the
global maximum and minimum of q in the interior domain are assumed at the poles.
In figure 11, such a transition is shown, the nominal aspect ratio and translation speed
of the initial state being ε = 0.75 and U = 1, respectively. This vortex is essentially
unstable: almost immediately a strongly non-stationary phase in its evolution begins,
which is evidenced by filament emission and strong irregularities in the core vorticity
field observed, e.g. at t = 25 (figure 11). To resolve the train of vorticity debris in the
wake of the dipole, we have performed a separate short-term run (t � 20) without
cutting, but in a longer basin (X = 10, Y =5). It was found that the debris behind
the dipole has a clearly periodical structure (the wavelength being approximately 2.5
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Figure 12. Evolution of the circular and ordinary elliptical β-plane modons in projection on
the parameter plane (λ2, ε), simulations with cutting; notations and initial parameters as in
figure 10(a).

to 3) and slowly propagates westward; a similar periodicity was also viewed in the
streamfunction field. From these observations, it can be deduced that a weak Rossby-
wave radiation takes place (we, however, were unable to produce a reliable estimate
of the phase speed). This conclusion is supported by the fact that no periodical
structures were observed in the corresponding f -plane experiments (see § 4.3).

While undergoing these changes, the vortex slows down but, by t = 100, reorganizes
into a well-formed quasi-stationary non-circular and non-dented dipole slightly
extended in the y-direction (ε ≈ 1.03), the peak values of q being approximately
equal to the initial q maximum and minimum. The further nearly steady translation
of the dipole (with a weak slowing down) was followed up to t = 400 (figure 11).
The net enstrophy in this experiment decreases owing to the filament emission and
the cutting applied, the loss of enstrophy by t = 400 being about 5% of the initial
quantity. Regarding the form in which the modon stabilizes, it is clearly not an ellipse
because the final scattergraph differs qualitatively from those of ordinary elliptical
modons.

The above scenario is typical of dented extraordinary modons with sufficiently high
initial translation speeds. Slower dented modons do not survive the strongly non-
stationary phase and disintegrate. The closer the aspect ratio of an extraordinary
vortex to ε = εD(λ2), the weaker its dent; correspondingly, the changes undergone by
the vortex are less dramatic.

As noted in § 4.1.2, while with dented modons the use of the cutting procedure
is unavoidable (for relatively small basins and long times), it is unnecessary when
dealing with non-dented dipoles. Nevertheless, we found it instructive to run a series of
experiments, in which the evolution of the ordinary modons considered in § 4.2.1 (ε = 1,
ε = 1.15, ε =1.2 and ε = 1.25) was simulated with the application of the cutting filter –
just to understand the role of the latter better. The temporal evolutions of the key
parameters of these four dipoles up to approximately t = 3000 are shown in figure 12
(tracks on the (ε, λ2)-plane) and, in more detail, but for a shorter time period
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Figure 13. Evolution of parameters of the circular and ordinary elliptical β-plane modons
(initial nominal radius r̄ = 1; translation speed U = 0.5 (i.e. λ2 = 2)) in the simulations with
cutting: dashed line, the modon with the initial nominal aspect ratio ε = 1; thin solid line,
ε = 1.15; bold solid line, ε = 1.2; dotted line, ε = 1.25. The displayed parameters are: (a)
translation speed U, (b) distance d between Ψ poles, (c) aspect ratio ε, (d) mean radius r̄ .

(t � 2000) in figure 13. These data show that, up to ε = 1.2, the form of modons with
higher aspect ratios changes less significantly. Again, the circular modon undergoes
the strongest changes, while the shielded modon with the nominal aspect ratio
ε =1.2 turns out to be the least susceptible to the perturbations produced by the
model.

As expected (§ 4.1.2), the cutting filter hinders the eastward propagation of the
ordinary vortices; since the vortices change slowly, the loss of net enstrophy by
t = 5000 is within 2%. A new observation is that, in the experiments with the modons
whose nominal aspect ratios were 1, 1.15 and 1.2, the decrease in translation speed
is attended by a slow increase in the modon mean radius r̄ (figure 13a, d), i.e. with
the entrainment compensating the decrease in integral energy within the modon
separatrix owing to the slowing down. The modon with the nominal aspect ratio 1.25,
however, behaves in a different manner. Taking into account the hindering effect of
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Figure 14. Scattergraphs (q vs. Ψ ) of the quasi-steady states reached by two β-plane modons
by t = 1000 in the experiments with cutting. The initial nominal parameters of the modons are:
(a) λ2 = 2 and ε =1 (line A in figure 12 and dashed lines in figure 13); (b) λ2 = 2 and ε = 1.15
(line B in figure 12 and thin solid lines in figure 13); dashed lines, q vs. Ψ relations at t = 0.

the cutting filter, the apparently small increase in the translation speed at the first
stage of evolution of this modon (t � 500) should be regarded as a manifestation
of essential acceleration of its eastward translation. This is physically consistent
with the observed rapprochement of the modon’s poles within the time interval
0 < t < 500, diminishing of the separatrix aspect ratio and decrease of the mean radius
(figure 13).

To summarize, the modons in these four experiments demonstrate a substantial
resistance to the perturbing effect of the cutting filter, the evolution of the dipole
with the initial nominal aspect ratio ε =1.2 being the slowest. This slow evolution
can be understood as an additional indication of the stability of the supersmooth
solutions. In this regard, we note that, ideally, each Lagrangian particle must conserve
its vorticity q and, hence, we can speak only of neutral stability. Accordingly, when
considered in the parameter space, a stable modon subjected to such perturbations
must not remain in the vicinity of the initial state, but can slowly recede from it,
passing from one quasi-stable state to another. We believe this is what is actually
observed in this experiment.

This brings us to another question: can the states passed by slowly evolving dipoles
be described as ordinary elliptical modons? No certain answer can be given to this
question. For instance, the dipole, whose q vs. Ψ relation is displayed in figure 14(a), is
the state to which the circular modon evolved by t = 1000. Its internal scattergraph –
two nearly straight lines linked by a short bar – differs qualitatively from that typical
of elliptical modons. In another example (figure 14b), the scattergraph of the dipole
that had been shaped by t = 1000 from an elliptical modon with the nominal aspect
ratio ε = 1.15 and translation speed U = 0.5 has much in common with the q vs. Ψ

graphs of ordinary elliptical modons. Moreover, following the evolution of each of the
three elliptical modons shown in figure 12, we fitted explicit elliptical solutions to the
observed values of U, r̄ and ε at t = 500, 1000, . . . and found that, up to t =2000, their
scattergraphs were fairly similar to those of the evolving dipoles, including the peak



24 R. Khvoles, D. Berson and Z. Kizner

1636 1638
–2

0

2

y  

(a) (b)

(d )(c)

–1 0 1
–15

0

15

q

840 842
–2

0

2

x

y  

–1.5 0 1.5
–30

0

30

Ψ

q

Figure 15. States achieved in the long-term evolution of two β-plane modons, simulations
with cutting: (a), (c) q fields; (b), (d) q vs. Ψ scattergraphs; upper panel, initially circular
modon (with nominal parameters as in figure 14a) at t =5000T; lower panel, initially elliptical
modon (with nominal parameters as in figure 14b) at t = 2000T; notation as in figure 11
(dashed lines in (b), (d), q vs. Ψ relations at t =0).

values of Ψ and q . However, in the subsequent evolution, the discrepancy between
the peak values of q gradually grew.

Our long-term simulations suggest that the periodical-in-time perturbations,
induced by the cutting filter, gradually transform the circular dipole to such a
state, which is more resistant to these perturbations in terms of the modon form (e.g.
line A figure 12). It is possible that, in the long-term perspective, the dipole could
achieve a ‘supersmooth’, though not exactly elliptical, steady state. In this process,
the perturbations induced by the model can serve as a source of negative vorticity at
y > 0 and positive vorticity at y < 0 required for the formation of shields (figure 15).
The tendency towards a shield formation and approaching a ‘supersmooth’ state is
especially evident in the evolution of the elliptical vortex with the nominal aspect
ratio ε = 1.15 (figure 15c, d). In this case, the scattergraph of the dipole at t = 2000
(figure15d) is qualitatively similar to that shown in figure 7(b), but the dipole cannot
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Figure 16. Experiments with modons tilted by 5◦ relative to the x-axis: upper panel, circular
modon with the nominal translation speed U = 1; lower panel, elliptical modon with nominal
parameters ε = 1.2 and U = 0.5; (a) and (d), absolute vorticity fields at the beginning of the
experiments; (b), (e) same at t = 400 (notation as in figure 15b, d); (c), (f ) q vs. Ψ scattergraphs
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be categorized as an elliptical supersmooth modon as its estimated parameters ε and
λ2 do not fit the relation ε = εSS(λ

2) (see figure 12).
So far, the perturbations considered were antisymmetric about the x-axis. For

completeness sake, a few experiments with translating modons were run, in which
small asymmetric perturbations were imposed on the initial states by tilting them by
5◦ relative to the x-axis. Since a tilted modon is not a stationary state, its evolution
is evident from the very beginning. While translating generally eastward, the modon
oscillates around the x-axis and emits vorticity filaments and Rossby waves. The latter
makes necessary the application of the cutting filter.

Regarding the circular modons, our results were qualitatively similar to those of
Hesthaven et al. (1993), who considered the behaviour of tilted divergent Larichev–
Reznik modons at different initial translation speeds (see also Makino et al. 1981).
A circular modon with the nominal translation speed U = 0.5 did not survive the
perturbation and, despite the fact that by t = 20 its oscillations around the x-axis had
actually died out, the dipole continued emitting vorticity filaments and Rossby waves,
swiftly decelerated and eventually disintegrated by t = 70. In contrast, a circular
modon with the nominal translation speed U = 1 did survive the initial perturbation
(figure 16a–c). At the completion of the stage of detectable oscillation, by t ≈ 100, the
translation speed of the dipole was U ≈ 0.98. Its subsequent evolution was similar to
that of a non-tilted circular modon, however, the aspect ratio ε increased at a faster
rate than in the non-tilted circular modon with nominal translation speed U =0.5.
As evidenced by figure 16(c), where the scattergraphs representing the interior and



26 R. Khvoles, D. Berson and Z. Kizner

exterior regions cross each other at a non-zero angle, by t = 400 there was still a
certain vorticity jump at the vortex frontier. The enstrophy loss due to the cutting in
this experiment was approximately 1.5%.

The ordinary elliptical dipoles with nominal parameters U = 0.5 and ε = 1.15, 1.2,
1.25 and the dipole with U =0.35 and ε = 1.15 (whose energy is equal to that of the
circular modon with U =0.5) demonstrated a more stable behaviour in response to
tilting, their post-oscillation evolution being similar to that of non-tilted modons with
the same nominal parameters. Again, the change undergone by the modon with the
nominal parameters U =0.5 and ε = 1.2 was least of all. Accordingly, by t =400, the
enstrophy loss in this experiment was only about 0.1% of the initial amount. This
modon has actually restored its initial characteristics within a few hundred time units
(figure 16d–f ). These results support the above conclusion regarding the stability of
the supersmooth elliptical modons.

The evolution of a standing elliptical modon with the aspect ratio ε =1.1 was
also examined. The observed behaviour of this dipole was similar to the unstable
evolution of the circular Stern modon described in detail by Kizner & Berson 2000
(see also § 1).

4.3. f -plane modons

The f -plane modons tested for stability differed in their initial aspect rations, the
nominal translation speed being the same (U = 1). In outline, the results obtained
on the β-plane remain valid on the f -plane: dented modons are unstable whereas
non-dented modons evolve quite slowly.

The evolution of the dented modon with the initial parameters ε = 0.75 and U = 1
was modelled both with the cutting filter (up to t = 400) and without it (up to
t = 20, but in a longer basin). The initial stage of the evolution was characterized
by substantial filamentation. However, as distinct from the β-plane case, no clear-cut
periodical structure was observed in the debris train behind the dipole.

A more detailed consideration is merited by the ordinary supersmooth modon
(demarcating the shielded and non-shielded configurations) and a comparison of the
evolution of vortices of these three types. The corresponding experiments were run
both with and without the cutting and, in full agreement with our preliminary
considerations (§ 4.1.2), no significant difference between the two versions was
observed. The temporal variation of the key parameters of the modons with the
nominal aspect ratios ε = 1 (circular); ε =1.16 (supersmooth); and ε = 1.25 (shielded)
is shown in figure 17 (simulations without cutting).

Within the period 0 < t < 1000, the circular (Lamb) modon gradually extends in
the y-direction, while slowing down and increasing the aspect ratio and mean radius
(figure 17). Just as in the evolution of the Larichev–Reznik modon, the quasi-
stationary states passed by the dipole were not exactly elliptical, since their internal
q vs. Ψ dependences differed from those typical of elliptical modons. This vortex
displays the greatest change in U , d and r̄ among the three compared.

In contrast to the circular modon, the ‘supersmooth’ elliptical dipole (ε = 1.162)
appears to be remarkably stable; all its characteristics – size, shape, translation speed,
distance between the poles and q vs. Ψ relation) – remain nearly constant during the
whole period 0 < t < 1000. In this respect, it is analogous to the supersmooth β-plane
modons.

Compared to the supersmooth modon, the shielded modon undergoes stronger
changes. Three stages can be observed in its evolution. Within the first 300 time units,
the modon evolves quite slowly. The changes in its parameters within the time interval
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Figure 17. Evolution of parameters of the circular and ordinary elliptical f -plane modons
with the nominal mean radius r̄ = 1 and translation speed U = 1: dashed line, the modon
with the initial nominal aspect ratio ε = 1; bold solid line, ε = 1.16; thin solid line, ε = 1.25;
displayed parameters as in figure 13.

300< t < 500 are the most significant: the mean radius decreases, the poles become
closer and the translation speed grows (figure 17). At the last stage, from t =500 to
t = 1000, the vortex stabilizes and barely changes.

5. Conclusion
Using a combination of analytical and numerical methods (the approach suggested

in Kizner et al. 2003), we have constructed and analysed a family of elliptical
barotropic f - and β-plane dipole modons – both extended in the x-direction and those
extended in the y-direction. Particular emphasis has been placed on the dependence
between the conserved vorticity q and co-moving streamfunction Ψ in relation to
the governing non-dimensional modon parameters. On the f -plane, there is only one
such parameter, ε = ry/rx – the aspect ratio characterizing the vortex form. On the
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β-plane, translating modons are characterized by two parameters, ε and λ2 = βr̄2/U ,
while a standing modon is determined by the form parameter ε only.

Strongly extended (in the x-direction) extraordinary modons on the β-plane were
shown to have a typical dent in their q fields – a depression on a generally bell-like
interior vorticity distribution – which is reflected by the upper end of the internal
scattergraph being curved downwards and the lower end being curved upwards; on
the f -plane, this was observed by Boyd & Ma (1990). Ordinary modons, i.e. those
extended in the y-direction, do not have such a feature.

When the extension of an ellipse in the y-direction is sufficiently strong, the
corresponding ordinary modon is shielded in terms of q . In such a modon, each of
the dipole counterparts is encased in a band where q is of opposite sign (figure 5).

The most interesting finding is the existence of the so-called supersmooth modons.
While in any non-shielded dipole on the β-plane there is always a jump of vorticity
derivatives across the separatrix Γ , among the shielded β-plane modons for each λ2

there exists a single supersmooth solution marked by the continuity of q derivatives
at Γ ; on the (λ2, ε)-plane, such modons are represented by a continuous line that
starts at the point (0, ε0) (see figure 1, line (iii)). In this point originates also the line
that demarcates shielded modons from non-shielded modons (line (ii) in figure 1); it
passes beneath the line of supersmooth solutions. On the f -plane, there is a unique
supersmooth solution. It is just this solution that demarcates the pure and shielded
modons; on the (λ2, ε)-plane it is represented by the point (0, ε0). This solution is a
limiting case (as λ2 → 0 and ε → ε0) of the β-plane elliptical modon solutions confined
between lines (ii) and (iii) in figure 1.

Another limiting case (as λ2 → ∞) of an ordinary modon was also constructed (for
mildly extended ellipses). This is the standing modon that exists only on the β-plane
and necessarily has a vorticity jump across the vortex boundary.

Several numerical simulations of the evolution of elliptical modons were run to
estimate and compare the stability properties of the elliptical solutions found. Two
kinds of experiment were conducted: (i) using the base version of the model, where the
perturbations are due to the finite size of the basin, periodical conditions at its western
and eastern boundaries, finite-difference approximation and processor rounding off,
and (ii) with periodical cutting of the peripheral vorticity, which in addition to
the above listed perturbations hinders the modons in their eastward translation.
Both ordinary (ε � 1) and extraordinary (ε < 1) solutions were tested. It was shown
that dented extraordinary modons are clearly unstable and either disintegrate or
evolve to the states with no dents. In contrast, non-dented configurations demon-
strated a considerable resistance to small perturbations (both antisymmetric and
asymmetric).

Our experiments point out that the supersmooth f - and β-plane solutions are
stable, whereas the circular modons are presumably unstable, albeit rather durable.
In the experiments with cutting, non-supersmooth non-dented modons demonstrate a
tendency, in perspective, to gradually transform into supersmooth (though not strictly
elliptical) states.

In geophysical applications, dipoles play a distinctive role, the apparent stability of
the circular Lamb and Larichev–Reznik modons being one of the main reasons for
their popularity. Taken together, our results signify that the forms of the observed
vortices (or, alternatively, their q vs. Ψ relations) should be studied more thoroughly.
Such a task looks feasible, at least, on a laboratory scale. Further, our numerical
experiments with baroclinic modons (Kizner et al. 2002, 2003) indicate that, in
stratified fluids, heton-like vortical structures represent a general type of equilibrium.
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We believe, therefore, that an investigation of the stability or otherwise of barotropic
modons to baroclinic perturbations might be of importance.
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